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Convection in an internally heated layer 

By R.THIRLBY 
School of Mathematics, University of Newcastle upon Tyne 

(Received 23 August 1969 and in revised form 2 April 1970) 

A numerical study has been made of steady laminar convection in an infinite 
horizontal layer of fluid, bounded above by a rigid plate held at constant tem- 
perature, and below by a thermal insulator. The fluid is heated by a uniform 
distribution of heat sources. Recent methods for the solution of the Navier- 
Stokes equations by finite differences are discussed, and the results of integrations 
in two and three space dimensions and time are presented in an attempt to 
determine the planform and other flow properties as functions of the Rayleigh 
and Prandtl numbers. 

Theee results are compared with a preliminary study by Roberts (1967) using 
a mean-field equation approach and with experimental observations by Tritton & 
Zarraga (1967) and Hooper (private communication). 

1. Introduction 
This paper deals with the convective motions which can arise in an infinite 

layer of homogeneous fluid between fixed horizontal planes, when heated 
sufficiently strongly from within by a uniform distribution of heat sources. The 
lower boundary is assumed to be thermally insulating and the upper to be 
perfectly conducting and maintained at  constant temperature. This situation 
will be compared with the more familiar BBnard convection, in which the motions 
are driven by a sufficiently large temperature difference across the layer and not 
by internal heating. (The lower boundary there is perfectly conducting.) The 
behaviour of both models is determined by two dimensionless numbers: 
a Rayleigh number, R, and the Prandtl number P. In both cases a static con- 
duction solution exists which is stable to infinitesimal disturbances for all R less 
than a certain critical value R,, which is independent of P. The questions that 
can be asked about the character of the motion which occurs for R > R, are 
similar: Are the motions tessellated? If so, what determines the pattern of 
periodicity (the preferred planform) and its horizontal wavelength, h (or 
equivalently its basic wave-number a )  ? Do the observed patterns depend on the 
history of the motion (hysteresis effects) ? Recognizing that in the experimental 
work the layer is bounded in its horizontal extent, under what circumstances 
does the flow structure depend noticeably on the assumed distant, vertical walls ? 
There is also the possibility that stable finite amplitude solutions exist for R < R,. 
Such motions have been observed by Rossby (1969) in an experimental study of 
BBnard convection with rotation, and also by Krishnamurti (1968). The latter 
work is particularly interesting in that it considers a variant of BBnard 
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convection with time-varying boundary temperatures with governing equations 
which are similar to those of the internally heated situation, except for one 
boundary condition on temperature. 

In BBnard convection i t  is of interest to observe the behaviour of the Nusselt 
number, N ,  as a function of R. In the present situation, N ,  the dimensionless heat 
flux per unit area, is by definition unity. A similar, equally significant, number 
here (which is identically unity in the BBnard case !) is 

mean temperature difference across the layer, no motion M =  __ 
mean temperature difference with convection 

. 

This is the reciprocal of the quantity M defined by Roberts (1967), and has been 
adopted for the largely aesthetic reason that M then increases from unity with 
increasing R. The form of the dependence of M on R and other parameters will be 
considered, and also whether any tendency can be detected for the motions to 
maximize M .  

It should not be thought that the situation considered here is merely another 
variant of the BBnard configuration: it has considerable interest in its own right. 
First, the symmetry of the Boussinesq version of the classical BBnard equations 
makes it in some sense special (see, for example, Schliiter, Lortz & Busse 1965). 
By adding extra physical effects such as temperature variation of viscosity 
(Segel & Stuart 1962) or surface tension (Pearson 1958) this symmetry isremoved, 
but at the expense of the introduction of an additional dimensionless parameter. 
The present situation is inherently asymmetric. Secondly, this configuration is a 
more faithful (though admittedly still idealized) model of a number of geophysical 
and meteorological situations than is BBnard convection. For example, con- 
vection in the earth’s mantle is produced by radioactive heating. Thirdly, there 
appears t o  be a real conflict between theory (Roberts 1967) and experiment 
(Tritton & Zarraga 1967; Hooper, private communication). Roberts’s technique 
was to Fourier analyze the Boussinesq equations in the horizontal plane and then 
to retain only those terms which define the fundamental planform of the motion. 
The resulting ordinary diffcrential equations in the vertical co-ordinate admit 
three distinct types of solution: rolls, hexagons with downward flow at  their 
centres, and hexagons with upward flow at their centres. The latter proved to be 
always unstable. Down hexagons were found to be stable if R exceeded a Prandtl- 
number-dependent value Rh, say, and a lay between Prandtl-number-dependent 
limits. For water with P = 6-7, Rh was about 8750. Roberts’s roll solutions were 
marginally stable for all values of R at a particular wave-number which increased 
gradually with R. Tritton & Zarraga’s experiments were performed with a fluid 
of Prandtl number about 5.5 and confined to values of R greater than about 
11,000. They observed polygonal cells with downward central motion, the 
patterns being mainly hexagonal a t  moderate values of R. Their most striking 
observation was that the size of these cells increased strongly with increasing R, 
being four times larger a t  R N 110,000 than a t  R N 11,000. The wave-numbers of 
such solutions were consistently outside the stable range as calculated by 
Roberts. Hooper’s results cover the whole range of R from below R, upwards. 
He found only polygonal cells with downward motion a t  their centres and 
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reports some elongation of cells with increased R but not on the scale of Tritton & 
Zarraga’s results. The primary objectives of this paper are first to solve the full 
partial differential equations governing this motion, rather than the use of 
Roberts’s approximate technique, and secondly to shed some light on t h e  obvious 
discrepaiicies in the above results. 

It is, perhaps, relevant at  this point to note the scope and limitations of this 
approach. The simulation of an infinite layer on a computer is as impractical as it 
is in the laboratory. It is, however, possible to provide periodic numerical solu- 
tions for an infinite layer, by applying cyclic conditions on the appropriate walls. 
The positions assigned to these walls will determine a basic wavelength, A, for 
the ensuing motions. If the volume so constructed is filled by a single cell, we may 
learn something of the preferred planform, but nothing of the preferred wave- 
number, or of Fourier modes with wavelengths greater than A-the so-called 
subharmonics. If h is sufficiently large, however, we may expect the volume to 
contain several cells, and thus study both the subharmonics and the preferred 
wave-number. The information so obtained is incomplete since it does not, unless 
h is unpredictably large, decide the preferred a within narrow limits. In principle 
this difficulty can be overcome by the method developed by Schluter et al. (1965) 
and extended by Busse (1967a, b) .  In this, the unit cell is imagined repeated to 
infinity and subjected to a perturbation whose periodicity need not be an integral 
multiple of a. The resulting problem for the perturbation is cast in a form which 
depends only on the basic cell of the steady solution. Assuming that, indeed, 
a preferred mode of a single periodicity does exist, this is probably the only 
satisfactory way of finding it. This paper does not attempt to answer questions 
of this type, but in the limited case of two-dimensional flow some estimate of the 
preferred period was obtained by making A so large that 30-40 cells were 
observed. 

The results so obtained support Roberts’s view that the preferred wave-number 
increases as R is increased. In three dimensions such an approach was not 
possible with the computing power available. The single cell results for P - 6 
suggest that some kind of three-dimensional flow is always possible and that the 
planform will be hexagonal with downward central flow at least for R greater 
than 15,000. 

2. The model equations: the linear theory and its consequences 
The basic model consists of a uniform horizontal layer 0 < z < d,  unbounded 

in the x and y directions and containing a fluid of density p, kinematic viscosity v, 
thermal diffusivity K and coefficient of volume expansion a. The layer is heated 
internally in such a way that, in the absence of conduction, the temperature of 
each fluid element would rise at a constant rate y. To define a set of non- 
dimensional variables the following scales are used; time, t ,  in units of d2/v; 
length in units of d ;  velocity, u, in units of v l d ;  and temperature, T ,  from zero at  
the upper surface, in units of yd2/K. The Prandtl and Rayleigh numbers are 
defined by 

P = V / K ,  R = aygd5/VK2, 
43-2 
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where g is the acceleration due to gravity. I n  component form, we write 
u = (u, v, w). The basic equations then become, in the Boussinesq approximation, 

divu = 0, (1)  

( 2 )  

(3) 

&/at + u .grad u = - grad n + V2u + (R/P)  Tk, 

P(aT/at + u . grad T )  = V2T + 1.  

Here n is a non-dimensional pressure variable, and k is a unit vector in the 
upward (i.e. z increasing) direction. The relevant boundary conditions, assuming 
rigid no-slip surfaces, are 

aT/az= 0 and u = 0, on z =  0, 

T = O  and u=O, on z =  1. 

(4) 

(5) 

Steady ' conduction ' solutions exist in which 

u = 0, T = T(O)(Z) = 4(l--z2),  n = ~ ( O ) ( Z )  = ( R / P ) ( c + & z - & z ~ ) ,  (6) 

and c is an arbitrary constant. If R is sufficiently large, steady 'convection' 
solutions are also found with 

(7) 

in which the averages (u),  ( 0 )  and (II) of u, 0 and II over any horizontal plane 
are zero. Here the functions u, 0 and n represent the tessellated motions of 
convection and To and no are the corresponding conduction terms T(O) and d o )  
as modified by these motions. These quantities can be expanded in sums of 
terms of the form 

u =I= 0, T = TO(2) + d(x, y, z ) ,  7~ = no(z) + n ( x ,  y, z ) ,  

and 

which represent the poloidal and toroidal parts of the velocity field respectively; 
and 

where bothf(x, y) and g(x, y) satisfy 

8 = F ( x ) f ( x ,  Y), II = G(z)f(x, Y), 

ay ay d -+----ay and D E -  ax2 ay2 dz' (9) 

(See Chandrasekhar 1961, chapter 2 . )  
For infinitesimal disturbances, the equations governing W ,  F and G are linear 

and the individual Fourier modes do not interact. These equations do not in 
general possess a solution. However, for each a, independent of the choice off, 
they pose an eigenvalue problem for R. The smallest eigenvalue R(a),  say, has a 
minimum R, which corresponds to a wave-number a,, say. Theee quantities 
decide the critical Rayleigh number and wave-numbers at which convection 
first occurs if R is increased gradually from zero. They were calculated by 
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Roberts (1967)) his values being 2772 and 2.63 respectively. They had been 
previously estimated by Debler (1966) as 2786 and 2.5. The single wave-number 
character of the convection patterns that occur at  R, merely reflects the fact that 
only one mode, ac, is self-excited. The precise form of tessellation is determined by 
non-linear effects which cause the modes such as (8) to interact. In  particular the 
mode a excites the higher harmonics 2a, 3a, etc. It is possible to use this approach 
to solve the non-linear convection problems by splitting the partial differential 
equations into a set of ordinary differential equations for individual Fourier 
modes and explicitly computing their interactions ; see, for example, Ehrenzweig 
(1969). It should be noted that there is also the possibility of cascade up the 
spectrum, i.e. of subharmonics being excited. For example, in the case of a roll of 
wave-number a, this would imply the maintenance of harmonics of wave- 
number &. This effect should be especially important where an infinite layer is 
approximated by one of finite extent. 

Qualitatively correct behaviour of M for small R - R, in the absence of sub- 
critical finite amplitude solutions can be readily obtained by applying the ‘shape 
hypothesis ’ of Stuart (1958). This yields an expression (Roberts 1967) of the form 

R 
R(l  -I?) + rR(a)’ M =  

where I’ is given in terms of the marginal solution for u and 0 for the chosen a by 

Taking a = a, and R(a) = R,, Roberts obtained the value 0.5994 for r, and this 
has been used to obtain the curve shown in figure 1 (labelled ‘Roberts, shape 
assumption ’) . 

Only certain types of solution of equation (9) will be of use in this study, the 
simplest being f = cos (ax), representing rolls of width 7r/a with their axes in the 
y direction. Combining three such sets of rolls mutually inclined at  60”) we have 

(11) f = cos (g  4 3  ax + i a y )  + cos (4 4 3  ax - *ay) + A  cos (ay) ,  

giving a type of closed cell whose importance was first stressed by Segel & Stuart 
(1962). The geometry of this cell depends on the constant A ,  and varies between 
rectangular at A = 0 and hexagonal at A = 1. Combining the first two terms of 
( 11) produces the equivalent expression 

f = 2 cos (4 j 3  ax) cos ( i a y )  -I- A cos (ay). (12) 

In  this form it is seen that f has periods in the x and y directions of 41~1j3a and 
41rla, respectively. Three-dimensional solutions will be sought satisfying periodic 
conditions based on these values. 

2.1. Numerical methods 

Equations (2) and (3), together with the boundary conditions (4) and ( 5 ) )  could be 
solved for u and T by standard ‘marching ’ techniques. This unfortunately leaves 
n to be determined by the only remaining equation, (1)) which is 7r independent. 
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I n  the limited case of two-dimensional flow in the (2,~) plane, this problem 
can be resolved by the introduction of a stream function, +, for the velocity. 
Then taking the curl of equation ( 2 )  to  eliminate IT terms, we have 

where 6 is the vorticity defined by 

Here both + and have simple boundary conditions on a rigid wall, 

@ = 0 and 6 = a2+/az2. (15) 

This technique has been successfully used by Pearson (1964) and Fromm (1965). 
In three dimensions this approach is less attractive because the velocity vector 
potential has no simple boundary conditions. Returning to equations (1) to (3) 
in terms of the ‘primitive variables’ U, T and I T :  by taking the divergence of (2) 
an elliptical differential equation for IT is obtained. This form was used by Harlow 
& Welch (1965), using one component of equation (2) to provide a boundary 
equation for IT. This method is particularly attractive in the calculation of flows 
with free surface conditions. 

A more satisfactory method for rigid boundaries is that due to  Chorin (1967a) 
and subsequently used by Plows (1968) to  survey the effects on BBnard con- 
vection of varying Prandtl number. Chorin introduces a small compressibility 
into the continuity equation, replacing (1)  by 

@/at = -divu. (16) 

IT = c2p, (17) 

(18) 

Here p is related to  IT by an ‘equation of state’ of a particula.rly simple form, 

where c is an  arbitrary constant playing the role of a sonic velocity. Equation (16) 
then becomes a+ = - c2 div u . 

Equations (18), (2) and (3) can then be stepped in time until a time-independent 
solution is obtained; whence an-/at = 0, by definition, and (18) reduces to equation 
(1). The value of c clearly does not affect the final solution and is chosen to speed 
convergence. Computing instabilities arise if c is too small which correspond to 
the flow becoming supersonic, hence c must obey the relation, 1.1 max < c. I n  fact 

c = 2lUlmax (19) 

appears to be the most acceptable in both thi’s and the BBnard problem. 

2.2. A new development of the method of artijicial compressibility 
for two-dimensional flows 

The above methods, when used to obtain steady solutions, use time effectively 
only as an  iteration parameter. This is convenient in the sense that, given a 
reasonable initial state, such an iteration will almost certainly converge if a 
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solution exists. It is, however, somewhat inflexible, and the convergence rate is 
limited by the numerical stability of the chosen time-stepping procedure. In  this 
paper a method will be used which is based on the time-independent form of 
equations (1) and (3), making use of equation (18) to find n. 

Consider, for example, the z component of equation ( 2 ) ;  this is, in its time- 

an R 
aZ  P 

independent form, 
V2w-u,gradw = ---T 

Only periodic, two-dimensional solutions are sought of wavelength A, hence the 
region of interest is the rectangle 0 < z < 1, 0 < x < A. Superimposing a regular 
finite difference net with spatial increments Ax and Az and denoting u(qAx, rAz) 
by U(q, r ) ,  a convenient finite difference form of (20) is 

Dzzw + D,,w = u[q, r]  D,w + w[q, r]  D,w + D,n - (B/P) T[q, r]. (21) 

Here the finite difference operators D,, D,, D,,, and D,, are defined by formulae 
of the type: 

D,u = ~ (u[q + 1, r] - u[q- 1, r ] )  
1 

2Ax 

This equation is now formally solved for the w(q, r )  terms occurring on the right- 
hand side only. Equations for u(q, r )  and T(q, r )  are readily found by analogous 
processes, and can be iterated together to find u(q, r ) ,  w(q, r )  and T(q, r )  every- 
where on the mesh, provided a suitable iterative form of (1) can be found for 
n(q, r ) .  Such an equation can be obtained from (18) in the form 

n[q,r] = n[q,r]-c2(D,u+D,w). (22) 

(23) 

On the boundaries, (18) reduces to 

a n p t  = - ~2 awlaz. 

In  this form, it can be used to obtain T on the boundary by a simple modification 
of (22), dropping the terms in u and replacing the central difference form of the 
z derivative of w by a suitable forward and backward form on the bottom and 
top surfaces respectively. 

Since the time-independent form of the other equations is used, @At can be 
regarded as one arbitrary constant and chosen to suit the numerical process, 
subject to restrictions analogous to (19). I n  practical tests with this method 
@At was chosen by experiment; too small a value produces numerical instability, 
whereas too large a value causes slow oscillatory convergence. The major attrac- 
tion of this scheme is its high convergence rate. Comparative tests of convergence 
are notoriously suspect, especially when performed by an interested party. 
However, a version of this code was modified to solve the equations of Bbnard 
convection with rigid (i.e. no-slip) boundaries and compared with a Dufort- 
Frankel artificial compressibility programme kindly supplied by Dr Chorin. 
Over a series of runs with varying Rayleigh number and a grid size of 28 x 30, the 
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present method showed a consistent reduction of more than 60 yo in the number 
of iterations required to achieve a given accuracy. An additional advantage is 
that only one storage field is required for each variable. This is also possible in a 
two-time-level scheme such as Dr Chorin's, provided suitable conservative finite 
differences are used for the advection terms, and the buoyancy force is suitably 
programmed. The equations then split equally into two disconnected meshes, 
only one of which need be stored a t  each time level. Chorin (1967 a, 5 I11 b)  
reports a considerable slowing down in convergence rate in the rigid boundary 
case due to the use of such difference schemes, thus making this idea sclf-defeating. 

2.3. Three-dimensional methods 

The technique described in 0 2.2 is applicable in three space dimensions but the 
desirability of studying the transitions from one planform to another make the 
use of a time-dependent method necessary. That used is largely due to  Chorin 
(1967 b)  and was developed from his earlier technique described in § 2.1. Suppose 
a finite difference grid is defined with increments Ax, Ay and Az in three space 
directions, and At in time. Denote by u(q,r,s) the value of u a t  the point 
(qhx, rAy, sAz). An approximate step to  time t = (a  + 1)  At is made using, in 
place of ( 2 ) ,  a finite difference form of 

aujat = V2u - (u .grad) u - (R/P) Tk,  (24) 
and the result of this called (say) u*. An iteration is now set up to  correct u* for 
the effects of neglecting the 7~ terms of ( 2 ) .  This is done by defining a finite 
difference analogue Du = 0,  of divu = 0 on the interior and awlax = 0 011 the 
rigid walls, using central differences for the former, and suitabIe sideways 
differences on the walls. The iteration is then written as 

n n + L 1  = @, (25) 

pDUn+Lm+l, (26) 

(27) 

nn+l. m+l = ++l, m - 

un+1, m+1 = U* - AtGmn. 

Here p is a parameter; nn+l> and u"+l* * are successive approximations to rn+l  

and un+l; and Gmn is a vector function of 7rn+l. m+l and nn+l* n1 which tends to a 
difference form of gradun+l as In"+lym+l - nn+l,ml tends to zero. The particular 
form of Gmn is important, and is best illustrated by example. If we apply (26) 
to the pressure ~ ( q ,  r ,  s),  the result involves the six velocities 

un+l,m+l(q+ l , r , s ) ,  ~ ) ~ + l . ~ + l ( q , r k  1,s) and ~ ~ + l , ~ + l ( q , r , s +  1) .  

These are obtained by applying (27) repeatedly as 

,n+L m+l ( q + l , r , s )  = u* (q+ l , r , s )  

U"+1, m + y q  - 1, r ,  s) = u*(q - 1, r ,  s) 

- (At/4Ax) [2nn+l9 "(q + 2 ,  r ,  s) - nn+l> m(q, r ,  s) - nn+l,m+l(q, T ,  s)], (28) 

- (At/4Az) [ 7 ~ ~ + l * ~ ( q ,  r ,  s) - 7 ~ ~ + ~ , ~ + * ( q ,  r,  s )  - 2nn+1*m(q- 2, r ,  s)], (29) 

with similar expressions for the other two pairs, and natural amendments near 
the walls. These seven linear equations can be readily solved for (m+ 1)th 
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approximations to the six velocities and pressure at the (n+ 1)th time step. In 
this iteration p acts as a relaxation parameter and it can be shown that the process 
converges for all y and that an optimum value of y can be found (see Chorin 
19673). 

The initial integration to obtain u* can be performed in many ways. Chorin 
suggests an alternating direction implicit method due to Samarskii (1963). This 
is very economical in its use of storage, but proved very inaccurate in use. 
This was due to the use of the intermediate field values (analogous to u', u" and u" 
defined below) in the calculation of the advection terms, when such values were 
not reasonable approximations to uTk and un+l. 

After some experiment the method adopted was a central difference, alter- 
nating directionimplicit method due toDouglas (1962), being a three-dimensional 
extension of the well-known algorithm of Peaceman & Rachford (1955). Applied 
to the x component of (2), three intermediate quantities u', u", u'" are calculated 
to obtain u*, as follows : 

U' = U ~ + A ~ [ $ D ~ ~ U ' + & D ~ ~ U " + D ~ ~ U ~ +  D z z ~ " ]  

- & U " D , U ' - $ U ~ D ~ U ~ - V ~ D  2/ u"-w~D,u"- Dxnn], (30) 

(31) 

(32) 

(33) 

U" = a' + &4t[D,,u"- Dyyun- V'D~U''  +vnDVun], 

u"' = U" + &At[DzzU'" - Dz2un - w"D~u"' + w " D ~ u ~ ] ,  

U* = u'" + AtD,nn. 

The inclusion of terms in n a t  the first step (equation (30)) ensures that u', un, u'" 
are successive approximations to u. This minimizes errors in the non-linear terms. 
Two storage fields per variable are required, one to store the un values, the other 
being used successively for u', u", u"', and u*. 

The algorithm, as described above, enables steady solutions in three dimensions 
to be obtained over a limited finite difference grid of 12 mesh points in each 
direction in about 40min computer time (programmed in Fortran on an 
IBM360/65). This time must be contrasted with a time of less than 2min to 
find a steady solution for a single cell in two dimensions (with the much finer 
32 x 32 grid !) using the method of $2.2.  

3. Solutions 

The solutions described in this section were confined to a fixed Prandtl number of 
6.8. This value should be compared with those of 6-7,5.5 and 6.6 given by Roberts, 
Tritton & Zarraga, and Hooper respectively. A series of iterations, using a 
constant h of 2n/a, (= A,, say, the wavelength of the solution a t  RJ, was per- 
formed for various values of R in the range 3000 to 52,000, initiating each 
calculation from the appropriate conduction solution (6), slightly perturbed by 
a sinusoidal temperature disturbance of wave-number a,. The values of M so 
obtained are shown in figure 1. The horizontally averaged mean temperature 
profile with depth was also calculated for each state and some of these are given 
as figure 2. Figure 1 also gives the values of M obtained by Roberts, both by his 

3.1. Solutions in two dimensions for P = 6-8 
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FIGURE 1. M as a function of Rayleigh number R for roll solutions at  wave-number a,. 
---, Roberts. mean-field; ---, Thirlby ; -, Roberts, shape assumption. 
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FIGURE 2. Horizontally averaged temperature with depth for roll solutions at  
wave-number a, and various values of R. 
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non-linear theory and the shape hypothesis. The former are consistently higher 
due, presumably, to  the constraint imposed on the motion implied by his approxi- 
mation. The agreement between the present results and the shape assumption is 
remarkably good for R less than about 3R,. This may be explained by the para- 
bolic form of the corresponding mean temperature profiles in figure 2. For higher 
values of R the flow in the lower half of the layer becomes largely isothermal and 
this ‘averaging out ’ of the profile reduces the lower surface temperature, hence 
in creasing M .  

For certain Rayleigh numbers other values of h were used in the range ;Ac to 
Zh,. The resulting variation in M was less than 10 yo over this range, and M 
reached a vague maximum near to A = A,. Cells with wavelength greater than 
2 4  could not be produced-steady states with two or three cells each of propor- 
tionately smaller period were observed instead. To permit a greater variety of 

a 

FIGURE 3. Fourier harmonics of two calculations a t  R = 10,000, P = 6.8. 
-- x --, wavelength 10n; -0-, wavelength 207r. 

cell sizes to occur, some calculations were carried out with muchlarger values of A. 
With h = 10n and R = 10,000 an initial perturbation in the form of a single roll of 
wavelength h produced 17 cells of average wave-number, Z say, of 3.4. A similar 
run with h = 20n produced 34 cells again with Z i  = 3-4. Fourier analyses of the 
mid-depth vertical velocity component are given in figure 3. The latter run 
repeated with 20 % more finite difference points in the horizontal direction again 
produced 34 cells with a similar, but not identical, Fourier spectrum, as did the 
result of numerically ‘stirring’ the above solutions and then reiterating to  a 
steady state. Examination of the Fourier components reveals, first, that only 
a few wave-numbers contribute much to  the motion. These are grouped around 
the value of a and lie in the interval 2.8 to 4.0. This spread of values represents 
the range of different cell sizes present in these solutions. Secondly, no significant 
Fourier components are found with wave-numbers corresponding to the natural 
subharmonics of a, suggesting that the horizontal extent of the layer is not 
particularly important in the determination of cell size. Thirdly, and perhaps 
more surprisingly, the natural overtones of a are hardly present. This is in marked 
contrast to  the Fourier spectra of single cell results a t  similar Rayleigh number, 
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some of which are given in table 1, normalized so that the value of the funda- 
mental is 100. This casts some doubt on the value of using models which assume 
only a single cell and its associated overtones. [The variation of the power of the 
overtone with wave-number in table 1 is to be expected from linear theory. At 
any particular Rayleigh number > R,, there are two wave-numbers where the 
motion is marginally stable, and where only one Fourier mode, the fundamental, 
is self-exciting. Between those values, at which all overtones would have zero 
amplitudes, they might be expected to increase in power and reach a maximum 
(hopefully, near to uJ.1 

a 1.6 1.8 2.0 2.2 2.4 2.63 2.8 3.0 3.2 3.4 3.6 3.8 4-0 
1st 17.9 3.0 5.1 10.0 11.5 12.2 12.0 11.3 10.4 9.5 8.3 6.4 5.5 
2nd 30.5 23.0 18.2 14.3 11.6 7.9 6.2 4.8 3.8 2-7 2.1 1.2 0.9 

TABLE 1. Amplitudes of the first and second ovcrtones of single roll solutions at B = 10,000, 
P = 6.8, for various wave-numbers. The fundamental has been normalized to 100 

1 m K M 

20 9 1-06 1.88 
20 21 1.10 1.86 
30 13 1.12 1.85 
30 21 1.17 1.81 
40 21 1.17 1.81 
40 33 1.18 1.80 

TABLE 2. Values of M and non-dimensional kinetic energy K for roll solutions at R = 10,000, 
P = 6.8, a = a, with different finite difference grid sizes. I and m are the numbers of grid 
points used in the horizontal and vertical directions respectively 

The grid size used in the above runs was varied according to Rayleigh number, 
and, of course, the number of cells present. For single cell calculations a t  
R < 10,000 agrid size of 20 x 21 was considered adequate. This was increased with 
R until at  around R = 52,000 the grid was 40 x 33 points. An assessment of the 
errors involved can be made by reference to table 2 which gives the computed 
values of M for a typical single roll at  R = 10,000 and a = 2.63 with different 
grid sizes. Here I is the number of points in the horizontal direction and m the 
number in the vertical direction. It should be noted that M is consistently over- 
estimated by a coarse grid. This is important in considering the results given in 
$3.2. The multicell, R = 10,000, calculations were performed on grids with 
1 = 250 and 300 points and m = 21. No appreciable differences were observed 
between these two sizes; in particular, the number of cells present and the 
quantity M were not affected. To be reasonably sure of convergence, calculations 
were continued until the three global quantities M ,  as previously defined, N the 
Nusselt number near the upper surface, and K ,  the total kinetic energy, had all 
reached steady values to 5 significant figures. (Single precision floating point on 
the 360/65 is only 24 binary places.) In  the multicell calculations some change 
in cell sizes could still be taking place at this stage, but further iteration did not 
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appear to  change the overall picture very much or show any real sign of all the 
cells becoming the same size. The actual value of N gives some idea of the con- 
servation of heat in the finite difference approximation, since it should physically 
be always unity. I n  practice it did not depart from this by more than 0.5 yo in any 
of the above solutions. 

3.2. Three-dimensional solutions 

Horizontal periods for the three-dimensional calculations were chosen to permit 
hexagonal solutions. Equation (12) with A = 1 for the fundamental mode of a 
hexagon of wave-number a, has periods 4 7 ~ 1 4 3 ~  and 47r/a in the x and y directions 
respectively. Defining the basic wavelength h as h = 217/a, these become 2hlJ3 
and 2h (i.e. a rectangle of side ratio J3). 

Initial values for the integrations were supplied either by superimposing a 
horizontal perturbation in the form of a hexagon on the temperature field of a 
conduction solution, or by using the end product of a previous run. The calcula- 
tion was monitored for values of M and the kinetic energy, and, less frequently, 
by the display of iso-lines of the vertical velocity component a t  mid-depth. Using 
standard values of A,, the critical wavelength, and a Prandtl number of 6.8, 
hexagons with downward motion a t  their centres, initiated from the conduction 
solution, became steady after some 6-1 2 non-dimensional time units, provided 
R exceeded - 15,000. Below this value of R, steady convection was still pro- 
duced, but the planform varied according to R, from hexagonal a t  15,000 to 
nearly rectangular a t  critical. I n  figures 4 (a) ,  (b ) ,  (c) and (d )  the vertical velocity 
component a t  mid-depth is shown as a series of contours. The cell boundaries are 
indicated approximately by the broken lines. The first of these diagrams, at 
R = 20,000, may be compared with that given by Chandrasekhar (1961, p. 50). 

I n  table 3 the first few terms of a two-dimensional Fourier analysis of the 
mid-depth velocity component are given for various Rayleigh numbers. These 
components were computed from the series 

# *m 
f = C A,, cos (& 43  sax) cos (3 tay),  

s=o t = o  

where 1 and m are the numbers of mesh points in the z and y directions respec- 
tively. For any particular pair of integers (s, t )  the wave-number of the corre- 
sponding term is &a(3s2 + t2)4. The fundamental mode with wave-number a 
therefore consists of two terms with (s, t )  equal to ( 1 , l )  and (0,Z). If the cell is 
purely hexagonal (12) shows that the ratio of the amplitudes of these terms 
should be 2. This is in practice far from true, even a t  R > 15,000 when the cells 
appear visually to  be very good hexagons. Conversely, near critical, the cells 
appear to  be almost perfect rectangles, yet the term (0,2) which should be zero 
for a pure rectangle so inclined t o  the axes is still present. Similarly the first 
overtone ofa  pure hexagon has wave-number a J3 and consists of the terms ( 2 , O )  
and (1 ,3) .  As in the two-dimensional single cell results, this first harmonic is 
strongly present. Also given are the amplitudes of the second harmonic (with 
wave-number 2a) comprising the terms (2 ,2)  and (0,4) and the first overtone 
wihh a toroidal part (not, of course, present in the vertical component), which 
has wave-number ad7 and has the three components (1,5), (2,4) and (3 ,1) .  
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FIGURE 4. Iso-lines of vertical velocity normalized to unity a t  the centre with cell boundaries 
indicated approximately by broken lines. P = 6-8, a = 2.63. (a) Rayleigh number 4000. 
(6) Rayleigh number 8000. (c) Rayleigh number 10,000. (d) Rayleigh number 20,000. 



Convection in an  internally heated layer 687 

The amplitudes of higher terms are not reliable in view of the small grid sizes 
involved. (For a discussion of significance and form of the poloidal and toroidal 
overtones see Ehrenzweig (1969).) In each of the above calculations a downward 
hexagonal initial perturbation leads to a cell with downward central motion. 
In  calculations with upward initial perturbations the flow rapidly reversed in 
sign and the final steady solutions were indistinguishable from the corresponding 
ones with downward initial states. 

The values of M obtained for various Rayleigh numbers are given in table 4 as 
a function of grid size along with the ‘best’ estimates of M for rolls from table 2. 
An additional column here gives M calculated for roll solutions obtained with the 
three-dimensional programme. These are given only for comparison since only 
4 points were used to represent their co-axial direction and therefore nothing can 
be said of their stability to disturbances in this direction. The three-dimensional 
cells have M values consistently larger than those from the two-dimensional 
programme, but, in view of the grid-size dependence shown here and in table 2, 
this difference can hardly be considered significant. The calculations were 
discontinued when the values of M and N had reached steady values in the 
manner described in 9 3.1 for rolls. 

Calculations with values of h large enough to permit a number of three- 
dimensional cells to co-exist must await a much larger and faster computer, but 
some attempts were made to increase h from A, to about 3h,. This produced 
behaviour reminiscent of that of the two-dimensional analogue. The single cell 
broke into a composite one which appeared to be mainly the first natural harmonic 
at  A N 1.5Ac. One example of such a state appears in table 3, case 4. Reversing the 
process, reducing A back to A, caused the original planform to be recovered with 
a large hysteresis in A. 

3.3. Low Prandtl numbers 

With P of unity, the behaviour differed considerably from that described above. 
For R greater than about 2Rc, all hexagonal perturbations, of either sign, pro- 
duced rolls, in the y direction for an R of less than 10,000 (wave-number ; 4 3  a )  
and in the ~t: direction for higher R (wave-number a).  This again tends to indicate 
a decrease of preferred wavelength on increasing R. In  the range Rc < R < 2Rc, 
the solutions resembled those for higher values of P, being basically rectangular 
in planform. Some integrations were also attempted in which, with A = A, and 
R = (8000,10,000,12,000), P was steadily decreased from 6.8 to 1.0 ; the expected 
change from three- to two-dimensional flow occurred at P - 2.5irrespective of the 
chosen value of R. 

4. Discussion 
For all the Rayleigh numbers, R, and Prandtl numbers, P, considered in this 

paper, some form of tessellated solution of the non-linear equations is found, 
provided that R exceeds the critical value R,. 

No convective solutions were found for R < R,, although attempts were made 
to initiate such solutions by means of perturbations of considerable amplitude in 
the form of both up and down hexagons, rectangles and rolls. This is rather 
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surprising since, in a possibly analogous situation, Krishnamurti (1969) found 
subcritical up hexagon solutions both by experiment and theory. Busse ( 1 9 6 7 4  
found subcritical hexagons in the case of BBnard convection where the fluid had 
varying material properties. Presumably, if such a region of subcritical hexagons 
exists, it is too narrow to be found by this type of three-dimensional analysis. 
For R between R, and about 2R, the general planform and cell structure is largely 
independent of P. This is to be expected since the linear theory is P independent. 
In this region the cells are three-dimensional and mainly rectangular in appear- 
ance. At larger values of R, the planform depends on the value of P. If this is of 
order unity (in particular, less than about 2.5)) the only planform found is the 
roll. If P is above this range, three-dimensional cells persist, their shape depending 
on R, becoming progressively more hexagonal as R increases until, for R above 
about 5R,, they appear to be almost perfect hexagons. 

Polygons 

1.05 
1.23 
1.38 
1.71 

10 3 *83 1.90 1.87 
15 2.11 2.14 2.15 

3 1.05 ** 
4 1-20 ** 
5 1-35 ** 
8 1-66 ** 

Rolls - 
20 x 4 x 13 

1.05 
1.23 
1.34 
1-70 
1-84 
2.11 

TABLE 4. Values of the parameter M for various grid sizes 
and Rayleigh numbers at P = 6.8 

-l 

40 x 33 

1.05 
1.20 
1.35 
1-65 
1-80 
2.05 

On the question of wave-number, only small values of h were used in the three- 
dimensional calculations because of the limitations of computer time and storage. 
Thus only approximate bounds for this quantity can be given. The results, how- 
ever, are adequate to demonstrate that a typical cell will break into its first over- 
tone if h exceeds about 1.5hC. Such planform transitions are always associated 
with an increase in M as is also the splitting of one cell into two or three when h 
exceeds 2h, in two dimensions. This might encourage the heuristic belief that 
some particular wave-number is naturally selected which maximizes M or some 
similar property of the motion. On the other hand, in the large h results, the most 
common wavelength is not that which would maximize M .  Similar attempts to 
establish an extremum principle for BBnard convection have been similarly 
unsuccessful. The experimentally observed wave-numbers differ consistently by 
several per cent from the calculated values for maximum Nusselt number (see 
Somerville 1969). Busse’s (1967 b)  results also suggest that a range of stable wave- 
numbers exists for moderate values of R. 

The configuration considered in this study differs essentially from BBnard 
convection in that the temperature boundary conditions are asymmetric and the 
static equilibrium temperature profile is parabolic rather than linear. Theoretical 
calculations by Palm (1960) and later by Segel & Stuart (1962) in which this 
symmetry is removed by the inclusion of a temperature-dependent viscosity, 

44 F L M  44 
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showed that the direction of motion of the centres of hexagonal cells followed the 
direction of decreasing viscosity. An equivalent result was obtained by Krishna- 
murti (1969), with a B6nard-like physical system having uniform viscosity but 
with time-varying boundary temperatures. Here the direction of flow was in the 
direction of decreasing gradient of the static temperature profile with depth. In 
the internally heated situation this rule would predict that only downward 
polygons are possible, as has been found in this study. Roberts’s theory and both 
Tritton & Zarraga’s and Hooper’s experiments also agree on this point, although 
they seem to be in conflict at  low Rayleigh numbers. Roberts’s conclusion that 
only rolls are stable for R less than a Prandtl-number-dependent critical value 

0 1 2 3 4 

R x 1 0 - 4  

FIGURE 5. The product M x R as a function of R showing 
slope change at R N 12,000. 

( N 8750 for water) was, presumably, due to the erroneous exclusion of rectangular- 
type cells from his calculations. Segel & Stuart did consider this type of cell, and 
found that it was the only stable form of three-dimensional cell provided the 
temperature variation of viscosity was small enough, otherwise hexagons were 
more stable. This suggests that the relatively large viscosity variations present 
in Tritton & Zarraga’s apparatus could account for all their cells being hexagonal. 
Busse’s (1967 a )  stationary equations appear to exclude such planforms, however. 
Perhaps our restriction of the horizontal periods to be always in the ratio of 1 : 43  
is significant here ? Hooper reports polygonal cells for all R but also that a dis- 
continuity of slope occurs in a plot of the product M x R against R at  about 
R = 11,000. This could represent some change in cell structure at  this Rayleigh 
number. A similar plot using calculated values of M as given in figure 5 shows 
a similar effect. 
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The most curious property of Tritton & Zarraga’s results is the enormous 
increase in cell size with Rayleigh number. This is not wholly confirmed by 
Hooper whose cells increase less rapidly in size with R. The results of the calcula- 
tion in this paper still seem to support Roberts’s view that cell sizes decrease with 
increased R, although the evidence for this is mainly from roll solutions. It was 
not however possible to create down hexagons of a size consistent with Tritton & 
Zarraga’s results as such solutions always split into their first overtone. These 
considerable differences of cell size between experiment and calculation could 
be due to the idealized mathematical model of the latter not representing the 
physical configuration of the former in some way. In  particular, variations in the, 
assumed constant, temperature of the upper surface of the layer might be 
significant. A closely related problem which could be regarded as an extreme 
case of such variation, in which the upper surface condition has been replaced by 
one of constant heat flux, has been studied by Jakeman, Hurle & Pike (1967). 

+ 30 
+ 20 
i- 10 

0 
- 10 
- 20 
- 30 

0 1 2 3 4 5 6 
a 

PIGURE 6 .  Fourier harmonics of vertical velocity at  R = 10,000, P = 6.8 with constant heat 
flux boundary conditions in top surface. -- x --, wavelength lor; -0-, wavelength 20n. 

Their linear stability analysis shows that the critical Rayleigh number is con- 
siderably reduced by this change, and that the critical wave-number becomes 
zero. (This corresponds to a cell of i nh i t e  wavelength !) This raises the possibility 
that any imperfection in the uniformity of cooling of an experimental apparatus 
might enlarge the cells. To examine such a situation, the boundary condition ( 5 )  
has to be replaced by 

a T / a z = - l  and u=O on z =  1, 

and a new zero point on the temperature scale provided by insisting that (T) = 0 
on z = 1. Figure 6 shows the Fourier decomposition of the resulting vertical 
velocities for two-dimensional runs otherwise comparable to those of figure 3. 
The initial conditions were h = 10n and 20n, R = 10,000 and P = 6.8, with a 
single cell perturbation to initiate the motion. The dominant wavelengths are 
considerably greater than those of figure 3. There is also a noticeable tendency 
for subharmonics to persist. It must, however, be borne in mind that with an 
experimental fluid consistency mainly of water, and a good conducting metal 
plate on top of their apparatus, spatial variations in Tritton & Zarraga’s surface 
temperature must have been small. 

One other experimental limitation that would influence cell size is that due to 
the use of rigid end walls. Figure 7 shows the Fourier decomposition of one test 

44-2 
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iteration in two dimensions with h = 1077, R = 10,000 and P = 6.8 in which the 
usual cyclic conditions were replaced by rigid end walls. Comparison with the 
otherwise identical case in figure 3 reveals little change either in the range of 
wave-numbers present, or in the absence of significant sub- or supercritical 
harmonics. In t h e e  dimensions the situation is less clear. The Fourier spectra of 
the only multiple cell integrations available are typified by table 3, case 4. This 
shows a large contribution from the first subcritical harmonic. The limited finite 
difference accuracy of such three-dimensional results may account for this. This 
aspect, along with better estimates of the preferred wave-numbers of hexagonall 
rectangular cells must await either qualitative physical experiments with layers 
of variable horizontal size or numerical simulations capable of producing many 
adjacent cells. 

I I I I I I I I I I I I 
1 2 3 4 5 6 

-40 I 
0 

U 

FIGURE 7. Fourier components of vertical velocity a t  R = 10,000, P = 6.8 and h = 10n with 
normal boundary conditions on top surface but rigid boundary conditions replacing the 
periodic boundary conditions on the sides of the layer. 

This study was made practicable by the generous provision of computer time, 
initially by the U.K.A.E.A., Culham Laboratory, and latterly by the University 
of Newcastle Computing Laboratory, to whose Director, Professor E. S. Page, 
Iamparticularlyindebted. Figures 4 (a) ,  ( b ) ,  (c) and(d) weredrawnon anIBM 1627 
graph plotter kindly made available by Newcastle Polytechnic. Our thanks are 
also due to Dr A. Chorin for the supply of copies of his computer programmes, to 
Dr D.C.Tozer and Dr D. J.Tritton for some interesting discussions and to 
Professor P. H. Roberts, a t  whose suggestion the study was undertaken. 
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